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HYDRODYNAMIC FORCES ON VERTICAL CYLINDERS
AND THE LIGHTHILL CORRECTION
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Abstract—In the keynote address to the 1979 Behaviour of Offshore Structures (BOSS)
Conference, Sir James Lighthill pointed out the absence of a second-order term of potential
origin from the Morison description of the hydrodynamic force on a vertical cylinder. This
term, referred to as the Lighthill correction, is due to the nonlinear interaction between the
flow velocity and its horizontal gradient. As noted by Lighthill, if this term is omitted, the
estimated drag force in the Morison equation is equal in effect to the actual drag force plus
the Lighthill correction. .

Thus, it would appear that in cases where hydrodynamic damping plays an important role
and should therefore be estimated as accurately as possible, corrections of the Lighthill type
might have to be added to the Morison expression for the hydrodynamic force. (One such case
is the dynamic amplification of wind-induced fluctuating motions of tension leg platforms.) In
particular, it might be expected that the estimation of the damping force would be more strongly
affected in situations involving low Keulegan-Carpenter numbers, and therefore relatively low
damping forces.

Tt is thus of interest to examine the effect of the Lighthill correction quantitatively. In this
work, the expression for the Lighthill correction was derived for finite water depths.
Measurements obtained in periodic wave flow at the Naval Civil Engineering Laboratory and
in random wave flow at the Delft Hydraulics Laboratory were subjected to an extensive analysis.
The results of the analysis showed that for both the periodic and random wave conditions and
addition of the Lighthill correction (1) did not imprave the Morison equation significantly, and
(2) had no significant effect on the estimation of the drag force, including the drag force
corresponding to very low Keulegan-Carpenter numbers.

INTRODUCTION

WAVE FORCES on cylindrical elements are of considerable interest in the design of
offshore facilities. Morison et al. (1950) proposed a simple equation expressing the total
wave force as the sum of two components: au inertia force, due to the effects of
irrotational (potential) flow, and a drag force, due to viscosity (skin friction and flow
separation) effects. The equation is calibrated with two empirical coefficients which are
referred to as the inertia and drag coefficient and are functions of the flow conditions.

The Morison equation has been criticized as oversimplifying the fluid mechanics of
the loading but an alternative rigorous approach has not been developed to date. There
appears to be a consensus that, to represent the fluid mechanics more closely, it is
better to add correction terms to the Morison equation rather than devise a completely
new relationship (Keulegan and Carpenter, 1958; Lighthill, 1979; Sarpkaya, 1981; Cook,
1987). The corrections of Keulegan, Carpenter and Sarpkaya are aimed essentially at
accounting for vorticity effects. The topic of this paper, the Lighthill correction, is a
correction associated with irrotational (potential) flow effects.

In his keynote address to the 1979 Conference on the Behaviour of Offshore
Structures (BOSS) Sir James Lighthill showed that the force associated with the
irrotational flow includes, in addition to the linear inertia term of the Morison equation,

. i




[IEY

z
E
£

2 G. R. Cook and E. Simiu

a nonlinear effect of potential origin due to the extensional motion (that is, the
horizontal gradient of the in-line component of the flow velocity). Lighthill also noted
that if the total force on a cylinder is expressed as the sum of the two Morison
equation terms only, then the Lighthill force, which is due to potential flow effects, is
automatically incorporated into the nonlinear drag term. This drag term is purportedly
due solely to viscosity effects. Therefore, the Morison equation leads to an erroneous
estimation of the force due to viscosity. The degree to which the error is significant
depends upon the ratio between the Lighthill force and the actual Morison component
associated with viscosity effects. This latter component is responsible for the bulk of
damping that controls the dynamic response of compliant offshore structures to
fluctuating wind (Simiu and Leigh, 1983; Cook et al., 1986). The question of the extent
to which corrections of the Lighthill type might affect the estimation of this component
is therefore of significant practical interest in this context.

The primary objective of this paper is to investigate the significance of the Lighthill
correction in quantitative terms. Two sets of data were used for the purpose of
investigating the quantitative significance of the Lighthill correction. The first set was
provided by the Naval Civil Engineering Laboratory (NCEL), and consisted of periodic
flow force and flow measurements obtained in a wave tank (see Hudspeth and Nath
(1985) for details). The second set was provided by the Delft Hydraulics Laboratory
! 3 and consisted of force and flow measurements obtained in a wave tank under
sarcom wave flow conditions (see Bearman et al. (1985a) for details).

THE MORISON EQUATION AND THE LIGHTHILL CORRECTION
T Morison equation (Morison er al., 1950) is widely used in ocean engineering as
an erpression for wave-induced forces on structural members. For the case of a circular
-ylteser of diameter D, the Morison equation is usually expressed as

1 du 1
m,lmvﬂ.b Cm i +Nubh§=_:_ 1

where F is the force per unit length, p is the fluid density, u is the undisturbed fluid
velocity and Cd and Cm are the drag and inertia coefficients, respectively. With the
widespread use of the Morison equation a great deal of work has been done on
evaluating the appropriate values of the force coefficients. A review of this work is
presented in Sarpkaya and Isaacson (1981).

As noted by Lighthill (1979) the fluid motion around a structure can be viewed as
being due to (1) an irrotational flow that satisfies the boundary conditions, and (2) a
vortex motion associated with any vorticity that has been shed (and satisfies zero
boundary conditions, that is, zero fluid motion far from the body). It is the component
due to the irrotational flow that Lighthill considers.

Lighthill derived two main second-order correction terms to the Morison equation.
The corrections are due to the nonlinear interaction between a surface piercing cylinder
and the irrotational flow field. The flow was assumed to consist of sinusoidal waves
propagating in the positive x direction. The first correction term is a waterline force
due to integration of the pressure between the still water level and the instantaneous
free surface. If a body is totally submerged, as in the case of a horizontal cylinder or
of nonsurface-piercing elements then this waterline force is not present. The second of
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Hydrodynamic forces on vertical cylinders - 3

the correction terms is due to the horizontal gradient of the velocity (the extensional
motion) and is given by the resultant of the dynamic pressure acting over the body’s
surface. Owing to the nature of the data being analysed in this paper we will consider
the second correction only.

At any point in a fluid, if the velocity potential ¢ is known the fluid pressure at any
point is determined by Bernoulli’s equation

1
P=-p:~pgz—p % —5p(Vo)* + C() @

where p is the fluid density, z is the distance from the still water level to the point
being considered, g is the acceleration due to gravity, C(¢) is a function independent
of the coordinates and p; is the atmospheric pressure. Both ps and C(¢) may be taken
equal to zero without loss of generality, see Stoker (1977).

Expanding the pressure p and the right-hand side of Equation (2) with respect to a

perturbation parameter € (e is the wave steepness and equals ak, where q is the wave

amplitude and & is the wavenumber) and equating powers of €2 we obtain the second

order pressure as

=t 1 2
P2=—p ot N_uﬁﬂv_v . ] 3
We seek the expression for ¢, and ¢, for the wave flow as modified by the v.:wmw:oo
of the cylinder. We first consider a potential flow with velocity u (in potential theory
u = 9¢/3x) in the far field. The presence of a circular cylinder results in a flow field
whose potential ¢, corresponds to a dipole (Milne-Thompson, 1960; p. 154), that is
b? :
A{H:Aw+;~tv cos 6 . 4)

where r is the radius to the point being considered, b is the cylinder radius and 9 is
the angle between the axis and the point being considered. If b = ¢, integration around
the cylinder of the first term in Equation (3) yields the second order inertia force.

Setting ¢ equal to ¢, would be sufficient if the cylinder response was due to a
fluctuating velocity only. However, in the case of a wave flow the in-line velocity has
a nonzero horizontal gradient (extension) denoted by E = gu/dx. The extension can be
expressed as a sum of a pure dilatation and a dilatationless strain (Lighthill, 1979). The
cylinder responds to the variable extension because the cylinder itself impedes the local
extensional motion of the fluid. This leads to a:local compensating addition to the
irrotational flow field, whose potential may be expressed as the sum of two terms:

(a) a monopole field associated with the pure dilatation to which there corresponds
the potential, ¢,,,, equal to (Lighthill, 1979; p. 19).

b = wAw ~2b%In wv )

where E is the extension and the other notations are the same as in Equation (4),
(b) a quadrupole field associated with the dilatationless strain to which there
corresponds the potential, ¢, equal to (Paterson, 1983; p- 217)
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E(, b
Ave =3 A\r + Uv cos 26 (6)
where the notation is the same as in Equations (4) and (5). Therefore, the total potential

for the fluctuating extension is given as the sum of Equations (35) and (6), that is,
E r E b*
= — 2 2 — — 2 2
&, i AW 2b%In vv + 4 A\ + Qvnomam. )]

To include the response to the fluctuating extension in the dynamic pressure, the
extension needs to be expanded in a power series :

E=¢E, +eE+. .. (8)
_ 9% _
where E, = Y and E, = eI
The total extension potential, ¢,, expanded in the power series (8) gives
m.— o) r m— 4
=t —~9h21n ~ fnd hall
b, =€ 1 A7 2b _cwv+ 4 Am+w~ cos 20 “

E, r\  E b*
2 = — 2 — 2
+e »Am 2b _nwv+pﬂx +mv8m®

Th- basic fluctuating velocity potential, ¢4, can be expanded as

vm/ wN
&gumEAI, ﬂy nomo+m~5 Aw,_.ﬂv oOwo. CS

The total potential is equal to the sum of the dipole and extension potentials, that is
& = ¢y + ¢, Using polar coordinates and noting that u; = d,/0x and u, = 9do/dx
we obtain the horizontal and vertical velocities on the cylinder surface (r = b):

Sl 139 2
<¢Ixm®lwmoﬁm9~+m $2) | A:v
umAlm_vaNmIN%ﬂpmm:mv +

e Almm bsin26 —2 e sin ov
ox

and

b 0
_ab_ 9 2 12
ve=g, T T e "
2 19E .
Hmhl\m?+mwe_vo0m¢+w@vw+1fvwoawav

dz 0x0z 4 9z 2 0z

m?%? qu ;mo v
2=+ - +|,N+|‘NN.
+ € Amw N@\&N@oomo 1732 v 39z v00m¢
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We can now calculate the total second order dynamic pressure, p>y = (12p(Vd1)?),

== E2 b sin? 20 +4 50 £, bsin 20 i 8 |
+4 @%«:ﬂvw sin? 6 + AMWVN + aw@w WMWM bcos® M
+W.m%wmm_.v~+ww\@w%8mwo+a me_vwwngma A |
+MI\NWM@%N|~%82+N®|MWW\MWM wuoommoowwm ’
+ mmAwmwvu b* + WA.WWV“ b* cos 20
+W mwv“ b*cos? 20} . (13)

The dynamic force around the cylinder is calculated as follows

1
m.&% = Mb Aqe—vw ny ds .

e (14)

= nﬂ.@N:F« mp + N@A—.NVN@:N

where the integral is taken over the wetted perimeter, n, is the x component of the
unit normal pointing toward the body, u, = dd,/ax is the first order velocity in the x
direction, E, = 9°,/ax? is the first order extension in the x direction, u,, = 3¢$,/8z is

the first order velocity in the z direction and the other notations are as given previously.

The total force on the section being considered is

- - . . e

“N& = NU&.( QN AHMV
where the integral is taken between the top and bottom of the submerged element
being considered. For slender cylinders the last term in Equation (14) turns out to be
insignificant compared to the first two. For kh > =, using Stokes first order theory we
obtain Lighthill’s results for deep water waves, that is

m=~N
= —u. 1
u, E; Uy I ‘ ‘ A 3
and

Fy, = —pmblu E,. . (17)
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The total force acting on an elemental section of a circular cylinder is now equal to the
two Morison equation terms plus the second order Lighthill correction (Equation (14)).
According to Lighthill the analysis for his correction is equally applicable in random
wave fields. If the analysis is to be performed in the time domain then the velocity is

simply the local fluctuating velocity and the extension is the local fluctuating extension
in the wave field.

The extension E and the spatial derivative of the vertical velocity u, and of E, which

are needed in Equation (14) were not measured, since such measurements cannot be
carried out in practice. The quantities, E;, du,,/dx and 9E,/oz were estimated from
measured flow properties as follows. For the periodic flow use was made of relations
based on Stokes second order wave theory (Cook, 1987). For the random flow the
measured records were decomposed into Fourier series and the requisite quantities
were obtained by differentiation of the terms of the series so obtained.

ANALYSIS OF THE PERIODIC DATA

This section deals with the results of the analysis of the periodic data based on the
Morison equation alone and then considers the effect of including the Lighthill
correction. The data obtained from NCEL included the wave profile, in-line force and
velocity measurements for a reasonable range of wave heights and wave periods.

Least squares analyses were performed to obtain the time invariant coefficients Cd
ard Cm based on the Morison equation. Figure 1 plots the drag coefficients for each
individual wave, showing their variation with Keulegan—-Carpenter number (KC = u
T/D and is the ratio of the measure of the path length of a fluid particle during a wave
period T, to the body diameter D). The drag coefficients show a large variability at
low KC numbers. This may be expected because the drag term is small relative to the

: inertia term and instabilities occur in its calculation. Note that above KC = 4 the drag
~ term is more significant and shows little variation with increasing KC numbers. It is

noted that the dependence of the drag coefficient on KC is similar to that reported by
Sarpkaya (1976).

Figure 2 plots the inertia coefficient against the KC number. It can be seen that at
low KC numbers (KC < 4) the inertia coefficient is greater than the ideal potential
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flow value of 2.0. THis is in agreement with results obtained by Chakrabarti et al. (1976)

and Chakrabarti (1980) who also reported values of Cm significantly greater than 2. .

Note that Cm = 2 if the effects of viscosity are neglected. Such effects are included in
expressions for Cm given by Sarpkaya (1986) and Bearman et al. (1985b). However,
these expressions are based on a linearization of the Navier-Stokes equations which is
acceptable only if the frequencies of the wave motion are very high. This linearization
is not applicable in the case of ocean or wave tank data.

Force time histories were calculated both for the full records and for each individual
wave of the full record. The forces were calculated by assuming the validity of the
Morison equation with time invariant coefficients. Figures 3-6, based on the analysis
of the full record, show measured and calculated force time histories for the lowest KC
(KC = 0.32), as well as for KC = 4.41, KC = 10.26, and the highest KC (KC = 15.31),
respectively. Also shown on these plots is the force residue, that is, the difference
between the measured and the calculated force histories. In all figures pertaining to
the periodic data, measured, and calculated forces are represented by solid and
interrupted lines respectively, and force residues are represented by dash-dot lines.

Force (N)

-26.0 T T T
00 20 40 (14

T T T T M|
80 100 2O WO 160 -
Time (g)

Fi. 3. Force time histories: measured (——); Morison equation (---); force residue A.I,M.M.v“ KC = 0.32.
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The dominant harmonic of the residue for all the force histories appears to be close to
the second harmonic of the force. It is noted that the Lighthill correction term also has
frequencies equal to twice the fundamental frequency.

Results corresponding to typical individual waves from each of the runs plotted in
Figs 3-6 are given in Figs 7-10. It was found that for all waves the dominant harmonic
of the residue appears to be close to the second harmonic of the force.

A separate analysis was conducted by assuming the forces to be described by the
Morison equation (with time invariant coefficients) corrected by the addition of the
Lighthill term. Figures 11-14 plot the calculated forces for the full records. When Figs
11-14 are compared to Figs 3-6 it can be seen that the difference between the respective
force residues is minimal. This can be seen more clearly in Fig. 15 where the r.m.s.
errors for the Morison equation are compared with those for the Morison equation
with the Lighthill correction.

We now consider the time histories for individual waves. Figures 16-19 show the
measured force, the calculated force based on the Morison equation with the Lighthill

10.0 4

WAVE NUMBER §
CO= 5.95834
CM= 221052

764

5.0

25

0.0+

Force (N)

=25

-5.0

754

-10.0 Y 1

Pt T
20703 95977 0.250 10,6624 gy
Time (5)

Fic. 7. Individual wave force time histories: measured (—); Morison on:m:or (---); force residue
(——); KC = 0.32.
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Force (N)

-25.0
-50.0 1

T50-4 e

~100.0

T

1] T T
403320 465675 527830 5.90085 652340
Time (s)

Fig. 8. Individual wave force time histories: measured (——); Morison equation (---); force residue
(———); KC = 4.41.
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Fig. 15. R.m.s. errors for the time histories obtained by the Morison equation with the Lighthill correction
vs the r.m.s. errors for the time histories obtained by the Morison equation.
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FiG. 16. Individual wave force time histories: measured (——); Morison equation with the Lighthill
correction (---); Lighthill correction (— - —); KC = 0.32.
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Fiz. 17.  Individual wave force time histories: measured (—); Morison equation with Lighthill correction
(---); Lighthill correction (— - —); KC = 4.41.
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Fic. 18. Individual wave .mo%a time histories: measured (——); Morison equation with the Lighthiil
correction (---); Lighthill correction (— - —); KC = 10.26.
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Fig. 19. Individual wave force time histories: measured (~—); Morison equation with the Lighthill
correction_(---); Lighthill correction (— - —); XC = 15.31.

correction and the Lighthill correction itself. (In all figures the Lighthill correction is
represented by long-dash-short-dash lines.) An overall assessment of the Lighthill
correction can be made by comparing the r.m.s. error for the Morison equation with
the Lighthill correction against the r.m.s. error for the Morison equation without
correction. Figure 20 shows this comparison for each of the waves analysed. It can be
seen that generally the modeling by the Morison equation is slightly better than the
modeling by the Morison equation with the Lighthill correction. However, the
differences are marginal.

Calculations were also performed to examine the effect of the Lighthill correction
on the drag and inertia coefficients. The results can be seen in Figs 21 and 22 where
the drag and inertia coefficients, respectively, are shown for the individual wave results.
These two figures plot the force coefficients based on the Morison equation with the
Lighthill correction (squares), and the force coefficients based on the Morison equation
(triangles) superimposed. It can be seen that there is very little difference in the drag
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coefficients over the whole range of KC numbers considered. For the inertia coefficients
the largest error, although still small, occurs at the higher KC numbers. Hence, it can
be concluded that for the NCEL data the addition of the Lighthill correction does not
decrease the drag coefficient significantly.

ANALYSIS OF THE RANDOM DATA

The data obtained from DHL included the in-line force, the horizontal and vertical
velocity, all measured at 2.5m (the lower level) and 3.5m (the upper level) above the
bottom of the tank and wave elevations which were measured upstream and downstream
of the cylinder. .

The effective Keulegan-Carpenter numbers as defined by Bishop (1978) (KC* =
(2m/0.866D) V (u*/a*) were u is the velocity, a is the acceleration and D is the cylinder
diameter) where KC* = 5.75 for the lower level and KC* = 6.0 for the upper level.
These low KC* values indicate that the dominant part of the total Morison force is due
to the inertia term. Since the Lighthill correction affects the inertia term, its effect may
therefore be expected to be most significant in the low KC* region. .

Least squares analyses of the full time histories of the measured forces, velocities
and accelerations were performed to estimate the drag and inertia coefficients in the
Morison equation without a correction term. The values so obtained were Cd = 0.2345
and Cm = 1.8295 for the lower level and Cd = 0.5393 and Cm = 2.0502 for the upper
level. Force spectra were then calculated using the Morison equation in which these
coefficients and the measured velocity and acceleration were used. Figures 23 and 24
show, for the lower and upper levels, respectively, these calculated force spectra (dashed
line) and the spectra of the measured forces (solid line). It is seen that the Morison
equation with time invariant coefficients provides an excellent fit to the measured
forces.

Least squares analyses were also performed to obtain the drag and inertia coefficients
when the Lighthill correction term was included in the calculation of the forces. The
coefficients obtained from the analyses were Cd = 0.2341, Cm = 1.8343 for the lower
level and Cd = 0.5403, Cm = 2.0587 for the upper level. When these coefficients are
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Fig. 23. Spectral density of Morison equation forces and measured forces.
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Fic. 24. Spectral density of Morison equation forces and measured forces. .

compared to those obtained by using the Morison equation without correction it can
be seen that the effect of the Lighthill term is minimal (of the order of 0.5% or less).
That the Lighthill term has no significant contribution to the total force is also borne
out by the measured force spectra (solid line) and the calculated force spectra (dashed
line) shown in Figs 25 and 26 for the lower and upper levels, respectively. Indeed, it
can be seen that the addition of the Lighthill correction does not change significantly
the calculated spectra with respect to their values based on the Morison equation with
ne correction (see Figs 23 and 24).

It is concluded that the Morison equation provides an excellent model for the DHL
measured forces, and that the inclusion of the Lighthill correction term makes no
significant difference for both the force coefficients and the calculated force spectra.

CONCLUSIONS

The Morison equation with time invariant coefficients provides an excellent model
for both the periodic and the random data analysed in this paper. The Lighthill

o -
v 10.0
¥
=~
mc 80+
£
&
*N 6.0+
&
=
2 401
Q
o
=
5 204
[33
a
7]
0.0 T d
000 045 060

030
Frequency (Hz)
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correction did not improve the performance of the Morison nacwcoa and did not alter
the drag coefficient to any significant extent.
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